
Physique Générale : Fluides et électromagnétisme (MA) – Prof. C. Theiler

12 Mai 2025 Vincent Benjamin

Corrigé 10

Exercice 1 : Condensateur plan avec des diélectriques
Soit un condensateur plan de surface S pour lequel les effets de bord sont négligeables. Les 2 plaques
sont séparées par une distance d. On remplit le condensateur par deux diélectriques de permittivités
relatives εr,1 et εr,2 sur une surface S et une épaisseur d/2 pour chacun des diélectriques.

(a) Montrez que la capacité est C = 2ε0S
d

εr,1·εr,2
εr,1+εr,2

.
(b) Refaites le même problème avec le condensateur de la figure ci-dessous (chacun des diélectriques

sur une surface S/2 et épaisseur d) et montrez que la capacité du condensateur est C =
ε0S
d

εr,1+εr,2
2

Solution :

(a) A cause de la charge q sur le condensateur, il y a un champ électrique entre les plaques qui
polarise les deux diélectriques. La conséquence est la génération des densités de charge de
surface σp,1 et σp,2

σp,1 = χ1ε0E1

σp,2 = χ2ε0E2

où E1 et E2 sont, respectivement, les intensités des champs électriques dans les diélectriques
1 et 2, tous les deux orthogonaux aux plaques, tandis que χ1 = εr,1 − 1 et χ2 = εr,2 − 1
sont les susceptibilités électriques correspondantes, voir figure ci-dessous.
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Pour déterminer la tension entre les deux plaques, on doit trouver E1 et E2. L’application
de la loi de Gauss sur la surface fermée S1 donne

E1S =
q − σp,1S

ε0
=

q − χ1ε0E1S

ε0

parce que le champ électrique est nul dans chaque plaque du condensateur et que l’on
néglige les effets de bords. L’expression précédente peut se réécrire

E1 =
q

ε0S(1 + χ1)
=

q

ε0εr,1S

De manière équivalente, pour la surface S2 on trouve

E2 =
q

ε0εr,2S

La tension entre les deux plaques est donc

U = E1
d

2
+ E2

d

2
=

qd

2ε0S

(
1

εr,1
+

1

εr,2

)
Finalement, on peut déterminer la capacité du condensateur :

C =
q

U
=

2ε0S

d

(
εr,1 · εr,2
εr,1 + εr,2

)

(b) Pour cette configuration, deux méthodes sont possibles :
Méthode 1 : En utilisant un raisonnnement similaire à la question précédente, mais en
notant q = q1 + q2 avec q1 et q2 l’accumulation de charge sur les plaques en face de chaque
diélectrique, on obtient

E1 =
2q1

ε0εr,1S

E2 =
2q2

ε0εr,2S
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Et pour la différence de potentiel entre les deux plaques, on a

U1 =
2q1d

ε0εr,1S

U2 =
2q2d

ε0εr,2S

Or l’ensemble de la plaque conductrice est à la même tension, cela implique que U = U1 =
U2 et donc

q1
q2

=
εr,1
εr,2

Par définition de la capacité du condensteur, on a

C =
q

U

=
q1 + q2

2q2d/(ε0εr,2S)

=
ε0S

d
εr,2

q1
q2

+ 1

2

Finalement, en utilisant l’expression du ratio des charges en face de chaque diélectrique,
on obtient en effet

C =
ε0S

d

εr,1 + εr,2
2

Méthode 2 : En négligeant les effets de bords, on peut voir ce condensateur comme étant
l’équivalent de deux condensateurs en parallèle, chacun avec une surface S/2. Les capacités
des deux condensateurs sont (voir cours) :

C1 =
ε0εr,1(S/2)

d

C2 =
ε0εr,2(S/2)

d

où ε0 est la permittivité du vide. Comme la capacité équivalente Ceq des deux capacités
C1 et C2 en parallèle est donnée par Ceq = C1 + C2 (voir série 9, exercice 4), on trouve
bien que la capacité du condensateur est C = C1 + C2 =

ε0(εr,1+εr,2)S
2d .

NB : cette méthode ne devrait pas être appliqué au cas précédent du fait de l’abscense
de conducteur éléctrique à l’intrerfaces entre les deux diélectriques, mais en pratique elle
donnerait tout de même le bon résultat.

Exercice 2 : Champ et potentiel d’un dipôle électrique
Soient deux charges +q et −q séparées par une distance δ.
On définit −→OA = ~r, −−→

OO1 =
1
2δ~ey = 1

2
~δ, −−→

OO2 = −1
2δ~ey = −1

2
~δ, avec ‖~r‖ � ‖~δ‖.

(a) Écrire le potentiel en A en ne gardant que les termes du premier ordre en δ.
(b) Dans la même approximation, trouver le champ ~E.

Indication :
1

‖~r + ~ε‖
=

1

‖~r‖
− ~ε · ~r

‖~r‖3
+O(||~ε||2)
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x

y

O1

O2

O

A

+q

−q

δ

Solution :

(a) Le potentiel en A vaut

V (A) =
q

4πε0

[
1

‖
−−→
O1A‖

− 1

‖
−−→
O2A‖

]
,

avec

−−→
O1A = −

−−→
OO1 +

−→
OA = (~r − 1

2
~δ) et −−→

O2A = −
−−→
OO2 +

−→
OA = (~r +

1

2
~δ).

Donc, le potentiel peut être réécrit comme

V (A) =
q

4πε0

[
1

‖~r − 1
2
~δ‖

− 1

‖~r + 1
2
~δ‖

]
,

et en utilisant le développement de l’indication et en négligeant les termes en O(δ2) :

V (A) =
q

4πε0

[
1

‖~r‖
+

1

2

~r · ~δ
‖~r‖3

− 1

‖~r‖
+

1

2

~r · ~δ
‖~r‖3

]

=
q

4πε0

~r · ~δ
‖~r‖3

.

On définit le moment dipolaire ~p tel que

~p = q~δ.

Ainsi
V (A) =

1

4πε0

~p · ~r
||~r||3

,

où cette expression n’est valable que si ‖~r‖ � ‖~δ‖. La dimension de V est correcte bien
que l’on ait au dénominateur ||~r||3. Mais notez que pour un ~p donné, V décroît en 1/‖r‖2 !
Vous pouvez voir la comparaison entre le potentiel d’une seule charge et d’un dipôle dans
les figures 1 et 2.
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(b)

~p · ~r = qδ~ey · (x~ex + y~ey + z~ez)

= qyδ

On en déduit donc le potentiel V en un point (x, y, z) :

V (x, y, z) =
qyδ

4πε0(x2 + y2 + z2)3/2
=

1

4πε0

[
qyδ(x2 + y2 + z2)−3/2

]
Donc le champ électrique est :

~E = −~∇V

= −
[
~ex

∂V

∂x
+ ~ey

∂V

∂y
+ ~ez

∂V

∂z

]
=

q δ

4π ε0

[
3

xy

(x2 + y2 + z2)
5
2

~ex +

(
3

y2

(x2 + y2 + z2)
5
2

− 1

(x2 + y2 + z2)
3
2

)
~ey + 3

zy

(x2 + y2 + z2)
5
2

~ez

]

=
1

4πε0

(
3
~p · ~r
r5

~r − 1

r3
~p

)
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Figure 1 – Potentiel d’une seule charge
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Figure 2 – Potentiel d’un dipôle

Exercice 3 : Étude des circuits - partie 1
(a) Calculez la résistance équivalente dans le circuit suivant

R1

R2

R3
R4
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(b) Trouvez la fem inconnue ξx dans le circuit suivant sachant les valeurs des résistances R1, R2,
R3 et R4, la fem ξ0 et le courant I3.

I3 R3

R4

R2

R1

ξ0

ξx

Solution :

(a) Tout d’abord, commençons par réaliser un schéma du circuit qui nous permettra de mieux
visualiser le système. Pour ce faire, on choisit un nom indicatif pour chaque noeud du
schéma initial :

R1

R2

R3
R4

A

BC

On peut donc représenter la schéma de la manière suivante :

R3

A

C

R2

B

A

R1R4

Ce circuit est équivalent au circuit :

R3

A

C

R2

R'
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avec 1
R′ =

1
R1

+ 1
R4

car les deux résistances R1 et R4 sont en parallèle. D’où R′ = R1R4
R1+R4

.
Le circuit de la figure est équivalent à

où R̃ = R′ +R2 car R′ et R2 sont en série.
Alors

R̃ = R2 +
R1R4

R1 +R4

=
R2(R1 +R4) +R1R4

R1 +R4

=
R2R1 +R2R4 +R1R4

R1 +R4

Finalement, le circuit de la figure au dessus est équivalent au circuit suivant :

Req

où 1
Req

= 1
R̃
+ 1

R3
car R̃ et R3 sont en parallèle.

D’où

Req =
R̃R3

R̃+R3

=
R1R2R3 +R2R4R3 +R1R4R3

R1 +R4
· R1 +R4

R1R2 +R2R4 +R1R4 +R3(R1 +R4)

=
R1R2R3 +R2R4R3 +R1R4R3

R1(R2 +R4 +R3) +R4(R2 +R3)

(b) Pour résoudre ce problème, on va annoter le circuit et définir plusieurs variables. On se
servira des lois de Kirchoff (loi des noeuds et loi des mailles) pour résoudre le problème.
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R1

U1
I1

ξ0

I1

ξx U2

R2

I2

I3

I4

U3

U4

R3

R4

BA

On peut choisir arbitrairement le sens des courants dans le circuit, ceux-ci étant des
grandeurs algébriques. Ainsi, si on se trompe de sens, le courant obtenu sera simplement
négatif et les calculs resteront valables.
Notez les points suivants : pour déterminer le sens de l’augmentation des tensions U1, U2,
U3, U4 à travers les résistances, il suffit de prendre le sens opposé au courant qui traverse
la résistance. Pour déterminer le sens de ξ0 et ξx, on va du "-" vers le "+".
On peut maintenant résoudre le circuit.
La loi des noeuds nous donne :
— noeud A : I2 = I3 + I4
— noeud B : I3 + I4 = I1
De plus, on peut dire que I1 = I2, car le courant qui rentre en ξx doit ressortir.
D’où

I1 = I2 (1)

I1 = I3 + I4 (2)

On peut maintenant utiliser la loi des mailles.
— Grande maille : ξ0 + U3 + U2 − ξx + U1 = 0
— Maille AB : U3 − U4 = 0
D’où

ξx = U1 + U2 + U3 + ξ0 (3)

et
U3 = U4 (4)

On sait que
U1 = R1I1 (5)

U2 = R2I2 (6)

U3 = R3I3 (7)

U4 = R4I4 (8)

On a donc 8 équations pour 8 inconnues (I1, I2, I4, U1, U2, U3, U4, ξx). On peut donc
résoudre le système.

ξx = R1I1 +R2I2 +R3I3 + ξ0

= R1(I3 + I4) +R2(I3 + I4) +R3I3 + ξ0

D’autre part, par (4) et (8)
I4 =

U4

R4
=

U3

R4
=

R3I3
R4
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D’où
ξx = ξ0 + I3

(
R1 +

R1R3

R4
+R2 +

R2R3

R4
+R3

)
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Exercice 4 : Étude des circuits - partie 2
(a) Votre batterie de voiture est à plat. Lorsque votre batterie est à plat, vous faites le circuit

suivant avec une bonne batterie :

Bonne batterie

Batterie défectueuse

câble de 
connection

   Ri 

= 0.02 Ω 

+-

ξ =12.5 V

   Ri 

= 0.1 Ω
ξ   = 10V    

Moteur

R=0.15 Ω

+-

câble de 
connection

Calculez le courant I dans le moteur.
(b) Cette fois, vous avez fait une erreur de branchement.

Bonne batterie

Batterie défectueuse

 Ri 

= 0.02 Ω 

+-

 Ri 

= 0.1 Ω
 

Moteur

R=0.15 Ω

+ -

ξ=12.5 V

ξ=10 V

Pourquoi ce montage est-il dangereux ?

Solution :

(a) On peut faire le schéma suivant :
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A B

R

U

I

I2

I1R1

R2

ξ1

ξ2U2

U1

où R1 est la résistance interne de la bonne batterie, R2 la résistance interne de la batterie
de la voiture et R la résistance du moteur.
On utilise la loi des noeuds :
— noeud A :

I = I1 + I2 (9)

— noeud B (qui donne la même information) :

I2 + I1 = I (10)

Et la loi des mailles :
— Maille du haut :

ξ1 − ξ2 +R2I2 −R1I1 = 0 (11)

— Maille du bas :
ξ2 −RI −R2I2 = 0 (12)

L’eq. (12) nous donne
I2 =

ξ2 −RI

R2
(13)

L’eq. (10) et (13) nous permettent d’écrire

I1 = I − I2 = I − ξ2 −RI

R2
(14)

Avec les eqs. (13) et (14), nous éliminons I1 et I2 dans l’eq. (11) :

ξ1 − ξ2 + ξ2 −RI −R1I +
R1

R2
(ξ2 −RI) = 0

Multiplions par R2 :

R2ξ1 −R2RI −R2R1I +R1ξ2 −R1RI = 0

Avec ceci, on trouve pour I :

I =
R2ξ1 +R1ξ2

RR1 +RR2 +R1R2
= 72.5 A. (15)

(b) Pour connaître l’effet du changement de polarité de la batterie défectueuse sur le circuit,
si on garde les même définitions des directions des courants dans la partie (a), il suffit de
remplacer la valeur de ξ2 par ξ2 = −10V dans les expressions de la partie (a). A présent il
est intéressant de calculer la valeur des courants I, I1 et I2.
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I = 52.5 A (16)

Grâce à (13) on trouve :

I2 = −178.75 A (17)

Notez que I2 < 0, cela nous dit que I2 passe dans la direction opposée à notre définition.
Enfin avec (10) :

I1 = 231.25 A (18)

Les courants qui passent au niveau des batteries sont très élevés et risquent de faire fondre
les fils de connecteurs qui portent en toute rigueur une certaine résistance électrique. On
peut calculer les courants dans le cas (a) :

I2 =
ξ2 −RI

R2
= −8.75 A (19)

I1 = I − I2 = 81.25 A (20)

On peut voir que ces courants sont beaucoup plus bas que dans le cas avec l’erreur de
branchement.
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Exercice 5 : Circuit RC
On considère la situation suivante :

S1

S2

+ -

(a) Dans un premier temps l’interrupteur S1 est fermé et l’interrupteur S2 est ouvert. Le condensateur
C (initialement non chargé) se charge grâce à la force électromotrice (fem) ε. La charge s’arrête
lorsque la différence de tension aux bornes de C vaut ε. Écrire l’équation différentielle régissant
l’évolution de la charge du condensateur et la résoudre.

(b) On ouvre alors S1 et on ferme S2. Le condensateur se décharge. Écrire l’équation différentielle
régissant l’évolution de la charge du condensateur et la résoudre.

Solution :

(a) Le circuit formé est

On peut “voir” que la fem amène des charges + du pôle + au point b du condensateur. La
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loi des mailles s’écrit :

0 = −Ur(t)− Uc(t) + ε

⇒ ε = RIC(t) +
q(t)

C

Le courant de charge IC s’exprime par IC(t) = dq
dt . On obtient donc l’équation différentielle :

ε

R
=

dq

dt
+

q(t)

RC
(21)

Cette equation est de la forme

an
dn

dxn
y + ...+ a2

d2

dx2
y + a1

d

dx
y = b (22)

qui est un equation différentielle linéaire à coefficiants ai constants. La solution générale
de ce type d’equation est donnée par la solution générale de l’equation homogéne (qui veut
dire l’equation avec b = 0) plus une solution quelconque (appelé solution particulière ) de
l’equation complète. Dans notre cas, l’equation homogène est donnée par

dqh(t)

dt
+

qh(t)

RC
= 0 (23)

On trouve sa solution en cherchant une solution de la form qh(t) = q0e
αt. Ceci est une

solution si α = − 1
RC , donc :

qh(t) = q0e
− t

RC

Pour trouver une solution particulière, on cherche une solution qp(t) = const. Ceci est une
solution si

dqp(t)

dt
+

qp
RC

=
ε

R
= 0 +

k

RC

qui est le cas pour k = εC. On trouve donc que

q(t) = q0e
−t/RC + εC (24)

Avec la condition initiale q(0) = 0 (le condensateur est initialement déchargé), on trouve :

q(t) = Cε(1− e−
1

RC
t)

On voit que pour un temps t → ∞, q → Cε.
(b) Le circuit avec S1 ouvert et C2 fermé prend la forme suivante
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La loi des mailles s’écrit :

−Ur(t) + Uc = 0

⇒ −RID + q(t)
C = 0

Mais attention dans ce cas le courant de décharge s’exprime ID = −dq
dt . Il y a changement

de signe par rapport au cas précédent car la convention prise pour le sens de l’intensité est
différente (convention générateur). Donc on obtient l’équation différentielle :

dq

dt
= − q

RC

La solution de cette équation différentielle avec la condition initiale q(0) = Cε est :

q(t) = Cε e−
1

RC
t

L’évolution temporelle de la charge au condensateur pendant les 2 phases est illustrée par
la figure ci-dessous (ε = 10 V , R = 1.5× 104 Ω, C = 1× 10−4 F ).

0 2 4 6 8 10 12 14 16 18 20
0
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0.2

0.3

0.4
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0.6
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1
x 10

−3

t [s]

q
(t

) 
[C

]

 

 

charge
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Exercice 6 : La Terre, un condensateur sphérique (Examen 2018)
La Terre est constamment frappée par des éclairs, dont la grande majorité transportent des charges
négatives vers le sol. Cela a pour effet de charger négativement la Terre et positivement la haute
atmosphère, située entre les altitudes h et 2h. La Terre et la haute atmosphère peuvent être
considérée comme de bon conducteurs.
Dans un premier temps, on ne tient pas compte de la présence des éclairs et on considère une
situation électrostatique.
On assimile la Terre ainsi que la haute atmosphère à des conducteurs sphériques, isolés électriquement
lun de lautre par la couche de basse atmosphère, isolante, située entre les altitudes 0 et h.
La Terre porte une charge −Q, et la haute atmosphère une charge +Q. On suppose que le reste de
l’espace est constitué de vide.

(a) Dessinez qualitativement la situation en régime statique, en indiquant la direction et le sens du
champ électrique ~E ainsi que la distribution des charges.

(b) Déterminez ~E dans tout l’espace.
(c) La tension entre la Terre et la partie conductrice de l’atmosphère vaut U =400 kV. Exprimez

Q en fonction de U , rT , et h. Déterminez la valeur de Q en considérant que rT =6370 km,
h =50 km et ε0 =8.85× 10−12A2 s4 kg−1m−3.

(d) Déterminez la capacité du condensateur formé par la Terre et par la partie conductrice de
l’atmosphère. Quelle est l’énergie électrique stockée dans ce système ? Donnez les résultats
sous forme d’expressions littérales avant de procéder à l’application numérique.

(e) En réalité, la basse atmosphère (l’air entre les deux conducteurs) n’est pas un isolant électrique
parfait. Par conséquence, il se forme une densité de courant faible mais non-nulle dirigée vers
la Terre. On considère que cette densité de courant est répartie de manière homogène à travers
la surface extérieure de la Terre et qu’elle est constante dans le temps de telle sorte que l’on
puisse l’écrire sous la forme ~j(~r, t) = −j(r)~er.
On suppose que la Terre est frappée par 100 éclairs par secondes, chacun apportant une charge
de 20C sur la Terre. Dans ce cas, quelle est la valeur de j(r) à la surface de la Terre nécessaire
pour que sa charge soit stationnaire ?

Solution :

(a) En considérant un régime statique, on a :
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(b) De par la symétrie et invariances du problème par rapport au centre de la Terre (utilisé
comme origine du repère sphérique), on a que ~E = E(r)~er .
Afin de déterminer E(r), on utilise la loi de Gauss intégrale qui s’écrit :

{
~E · d~S =

Qint

ε0
(25)

Pour le terme de gauche de l’équation 25, on considère comme surface de Gauss une sphère
de rayon r et de centre identique à celui de la Terre (donc d~S = dS~er), ainsi on obtient :

{
~E · d~S = 4πr2E(r)

Pour le terme de droite de l’équation 25, on distingue 3 situations :
— Pour r < rT et r ∈]rT + h, rT + 2h[, on a ~E = ~0, étant donné quen électrostatique, les

charges se répartissent à la surface des conducteurs, de sorte que Qint = 0 ; le champ
électrique est donc toujours nul en leur sein.

— Pour r ∈]rT , rT + h[, on a Qint = −Q et donc d’après la loi de Gauss :

4πr2E(r) = −Q

ε0
⇒ E(r) = − Q

4πε0r2

D’où, pour le champ électrique :

~E = − Q

4πε0r2
~er

— Pour r > rT + h on a Qint = Q−Q = 0. On obtient ainsi ~E = ~0 dans l’espace au delà
de la haute atmosphère.

(c) La différence de potentiel donnée entre les deux conducteurs U =400 kV est reliée au champ
électrique par la relation :

U = [Φ(r)]rT+h
rT

= −
∫ rT+h

rT

~E · d~r

En considérant d~r = dr~er, on peut exprimer le résultat de l’intégrale en fonction de
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l’expression du champ électrique obtenu à la question précédente :

U =

∫ rT+h

rT

E(r)dr

=

∫ rT+h

rT

Q

4πε0r2
dr

=
Q

4πε0

∫ rT+h

rT

1

r2
dr

=
Q

4πε0

[
−1

r

]rT+h

rT

=
Q

4πε0

(
− 1

rT + h
+

1

rT

)
=

Q

4πε0

(
rT + h

rT (rT + h)
− rT

rT (rT + h)

)
= Q

h

4πε0rT (rT + h)

D’où l’expression finale pour la charge Q en fonction des données de l’énoncé :

Q = 4πε0rT

(
1 +

rT
h

)
U (26)

Et en appliquant les valeurs numériques :
Q = 4 · π · 8.85 · 10−12 · 6370 · 103 ·

(
1 + 6370·103

50·103

)
· 400 · 103 ≈36 385C

(d) Par définition, la capacité d’un condensateur est la quantité qui relie la charge porté à la
différence de potentiel entre les deux électrode selon la relation Q = CU . Par identification
avec le résultat de l’équation 26, on obtient

C = 4πε0rT

(
1 +

rT
h

)
En faisant l’application numérique :
C = 4 · π · 8.85 · 10−12 · 6370 · 103 ·

(
1 + 6370·103

50·103

)
≈0.091F

L’énergie stocké dans un condensateur de de charge C sous une tension U s’exprime CU2/2.
En explicitant avec les résultats précédents, on obtient l’expression suivante :

W = 2πε0rT

(
1 +

rT
h

)
U2

En faisant l’application numérique :
W = 2 · π · 8.85 · 10−12 · 6370 · 103 ·

(
1 + 6370·103

50·103

)
· (400 · 103)2 ≈7.28× 109 J

(e) Le courant I apporté par les éclairs est :

I[A ≡ C · s−1] = −20[C] · 100[s−1]

Ainsi, la densité de courant nécessaire pour compenser l’apport de charge dû au éclairs
peut être calculée pour la surface de la Terre :

j = − I

4πr2T

En faisant l’application numérique :
j = − −20·100

4π(6370·103)2≈3.92× 10−12Am−2
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